lunes, 7 de julio de 2014

Diagrama de flujo:

 El diagrama de flujo  o diagrama de actividades es la representación gráfica del algoritmo o proceso. Se utiliza en disciplinas como programación, economía, procesos industriales y psicología cognitiva.
En Lenguaje Unificado de Modelado (UML), un diagrama de actividades representa los flujos de trabajo paso a paso de negocio y operacionales de los componentes en un sistema. Un diagrama de actividades muestra el flujo de control general.
En SysML el diagrama de actividades ha sido extendido para indicar flujos entre pasos que mueven elementos físicos (p.ej., gasolina) o energía (p.ej., presión). Los cambios adicionales permiten al diagrama soportar mejor flujos de comportamiento y datos continuos.
Estos diagramas utilizan símbolos con significados definidos que representan los pasos del algoritmo, y representan el flujo de ejecución mediante flechas que conectan los puntos de inicio y de fin de proceso.

                            


Algoritmo:

En matemáticas, lógica, ciencias de la computación y disciplinas relacionadas, un algoritmo (del griego y latín, dixit algorithmus y este a su vez del matemático persa Al-Juarismi1 ) es un conjunto prescrito de instrucciones o reglas bien definidas, ordenadas y finitas que permite realizar una actividad mediante pasos sucesivos que no generen dudas a quien deba realizar dicha actividad.2 Dados un estado inicial y una entrada, siguiendo los pasos sucesivos se llega a un estado final y se obtiene una solución. Los algoritmos son el objeto de estudio de la algoritmia.1

Uso : 

En la vida cotidiana, se emplean algoritmos frecuentemente para resolver problemas. Algunos ejemplos son los manuales de usuario, que muestran algoritmos para usar un aparato, o las instrucciones que recibe un trabajador por parte de su patrón. Algunos ejemplos en matemática son el algoritmo de multiplicación, para calcular el producto, el algoritmo de la división para calcular el cociente de dos números, el algoritmo de Euclides para obtener el máximo común divisor de dos enteros positivos, o el método de Gauss para resolver un sistema lineal de ecuaciones

                       

Pseudocodigo:

l pseudocódigo (o falso lenguaje) es una descripción de alto nivel compacta e informal1 del principio operativo de un programa informático u otro algoritmo.

Utiliza las convenciones estructurales de un lenguaje de programación real2 , pero está diseñado para la lectura humana en lugar de la lectura mediante máquina, y con independencia de cualquier otro lenguaje de programación. Normalmente, el pseudocódigo omite detalles que no son esenciales para la comprensión humana del algoritmo, tales como declaraciones de variables, código específico del sistema y algunas subrutinas. El lenguaje de programación se complementa, donde sea conveniente, con descripciones detalladas en lenguaje natural, o con notación matemática compacta. Se utiliza pseudocódigo pues este es más fácil de entender para las personas que el código del lenguaje de programación convencional, ya que es una descripción eficiente y con un entorno independiente de los principios fundamentales de un algoritmo. Se utiliza comúnmente en los libros de texto y publicaciones científicas que se documentan varios algoritmos, y también en la planificación del desarrollo de programas informáticos, para esbozar la estructura del programa antes de realizar la efectiva codificación.
No existe una sintaxis estándar para el pseudocódigo, aunque los ocho IDE's que manejan pseudocódigo tengan su sintaxis propia. Aunque sea parecido, el pseudocódigo no debe confundirse con los programas esqueleto que incluyen código ficticio, que pueden ser compilados sin errores. Los diagramas de flujo y UML pueden ser considerados como una alternativa gráfica al pseudocódigo, aunque sean más amplios en papel.

                               


MAQUINIS DE TRABAJO EN EL TALLER:

FRESADORA:
 Una fresadora es una máquina herramienta utilizada para realizar mecanizados por arranque de viruta mediante el movimiento de una herramienta rotativa de varios filos de corte denominada fresa.1 Mediante el fresado es posible mecanizar los más diversos materiales como madera, acero, fundición de hierro, metales no férricos y materiales sintéticos, superficies planas o curvas, de entalladura, de ranuras, de dentado, etc. Además las piezas fresadas pueden ser desbastadas o afinadas.2 En las fresadoras tradicionales, la pieza se desplaza acercando las zonas a mecanizar a la herramienta, permitiendo obtener formas diversas, desde superficies planas a otras más complejas.
Inventadas a principios del siglo XIX, las fresadoras se han convertido en máquinas básicas en el sector del mecanizado. Gracias a la incorporación del control numérico, son las máquinas herramientas más polivalentes por la variedad de mecanizados que pueden realizar y la flexibilidad que permiten en el proceso de fabricación. La diversidad de procesos mecánicos y el aumento de la competitividad global han dado lugar a una amplia variedad de fresadoras que, aunque tienen una base común, se diferencian notablemente según el sector industrial en el que se utilicen.3 Asimismo, los progresos técnicos de diseño y calidad que se han realizado en las herramientas de fresar, han hecho posible el empleo de parámetros de corte muy altos, lo que conlleva una reducción drástica de los tiempos de mecanizado.

 TORNO:
Se denomina torno (del latín tornus, y este del griego τόρνος, giro, vuelta)1 a un conjunto de máquinas y herramientas que permiten mecanizar piezas de forma geométrica de revolución. Estas máquinas-herramienta operan haciendo girar la pieza a mecanizar (sujeta en el cabezal o fijada entre los puntos de centraje) mientras una o varias herramientas de corte son empujadas en un movimiento regulado de avance contra la superficie de la pieza, cortando la viruta de acuerdo con las condiciones tecnológicas de mecanizado adecuadas. Desde el inicio de la Revolución industrial, el torno se ha convertido en una máquina básica en el proceso industrial de mecanizado.
La herramienta de corte va montada sobre un carro que se desplaza sobre unas guías o rieles paralelos al eje de giro de la pieza que se tornea, llamado eje Z; sobre este carro hay otro que se mueve según el eje X, en dirección radial a la pieza que se tornea, y puede haber un tercer carro llamado charriot que se puede inclinar, para hacer conos, y donde se apoya la torreta portaherramientas. Cuando el carro principal desplaza la herramienta a lo largo del eje de rotación, produce el cilindrado de la pieza, y cuando el carro transversal se desplaza de forma perpendicular al eje de simetría de la pieza se realiza la operación denominada refrentado.


ESMERIL:
Un esmeril angular, amoladora angular o radial, es una herramienta impulsada para cortar, para esmerilar y para pulir.
Un esmeril angular se puede impulsar con un motor, el cual impulsa una cabeza de engranajes en un ángulo recto en el cual está montado un disco abrasivo o un disco de corte más delgado los cuales pueden ser reemplazados cuando se desgastan. Los esmeriles angulares típicamente tienen un protector ajustable para su operación con cualquiera de las dos manos. Ciertas amoladoras angulares, dependiendo de su rango de velocidad, pueden utilizarse como lijadoras utilizando un disco lijador con un disco o almohadilla de apoyo. El sistema protector usualmente esta hecho de un plástico duro, resina fenólica o caucho de media dureza dependiendo de la cantidad de flexibilidad deseada.


BURIL:
Se denomina buril a una herramienta manual de corte o marcado formada por una barra de acero templado terminada en una punta con un mango en forma de pomo que sirve fundamentalmente para cortar, marcar, ranurar o desbastar material en frío mediante el golpe con un martillo adecuado, o mediante presión con la palma de la mano. También se utilizó en las primeras formas de escritura.
Antes del dominio de los metales por parte del hombre se realizaban buriles con materiales tales como hueso o piedra.











CIRCUITO:
Un circuito es una red eléctrica (interconexión de dos o más componentes, tales como resistencias, inductores, condensadores, fuentes, interruptores y semiconductores) que contiene al menos una trayectoria cerrada. Los circuitos que contienen solo fuentes, componentes lineales (resistores, condensadores, inductores) y elementos de distribución lineales (líneas de transmisión o cables) pueden analizarse por métodos algebraicos para determinar su comportamiento en corriente directa o en corriente alterna. Un circuito que tiene componentes electrónicos es denominado un circuito electrónico. Estas redes son generalmente no lineales y requieren diseños y herramientas de análisis mucho más complejos.


NORMAS DEL TALLER:
ORDEN Y LIMPIEZA

1. Mantén limpio y ordenado tu puesto de trabajo
2. No dejes materiales alrededor de las máquinas. Colócalos en lugar seguro y donde
no estorben el paso.
3. Recoge las tablas con clavos, recortes de chapas y cualquier otro objeto que pueda causar un accidente
4. Guarda ordenadamente los materiales y herramientas. No los dejes en lugares inseguros
5. No obstruyas los pasillos, escaleras, puertas o salidas de emergencia
UN SÓLO TRABAJADOR IMPRUDENTE PUEDE HACER INSEGURO TODO UN TALLER

EQUIPOS DE PROTECCIÓN INDIVIDUAL

1. Utiliza el equipo de seguridad que la empresa pone a tu disposición
2. Si observas alguna deficiencia en él, ponlo enseguida en conocimiento de tu superior
3. Mantén tu equipo de seguridad en perfecto estado de conservación y cuando esté deteriorado pide que sea cambiado por otro
4. Lleva ajustadas las ropas de trabajo; es peligroso llevar partes desgarradas, sueltas o que cuelguen
5. En trabajos con riesgos de lesiones en la cabeza, utiliza el casco
6. Si ejecutas o presencias trabajos con proyecciones, salpicaduras, deslumbramientos, etc. utiliza gafas
de seguridad
7. Si hay riesgos de lesiones para tus pies, no dejes de usar calzado de seguridad
8. Cuando trabajes en alturas colócate el cinturón de seguridad
9. Tus vías respiratorias y oídos también pueden ser protegidos: infórmate.
LAS PRENDAS DE PROTECCIÓN SON NECESARIAS. VALORA LO QUE TE JUEGAS NO UTILIZÁNDOLAS


Herramientas manuales

1. Utiliza las herramientas manuales sólo para sus fines específicos. Inspecciónalas
periódicamente
2. Las herramientas defectuosas deben ser retiradas de uso
3. No lleves herramientas en los bolsillos salvo que estén adaptados para ello
4. Cuando no la utilices deja las herramientas en lugares que no puedan producir accidentes
CADA HERRAMIENTA DEBE SER UTILIZADA EN FORMA ADECUADA


Escaleras de mano

1. Antes de utilizar una escalera comprueba que se encuentre en perfecto estado.
2. No utilices nunca escaleras empalmadas una con otra, salvo que estén preparadas.
para ello.
3. Atención si tienes que situar una escalera en las proximidades de instalaciones con tensión.
Provéelo antes y toma precauciones.
4. La escalera debe estar siempre bien asentada. Cerciórate de que no se pueda deslizar.
5. Al subir o bajar, da siempre la cara a la escalera.
LAS ESCALERAS SON CAUSA DE NUMEROSOS ACCIDENTES: SÉ PRECAVIDO


Electricidad

1. Toda instalación debe considerarse bajo tensión mientras no se compruebe lo
contrario con los aparatos adecuados.
2. No realices nunca reparaciones en instalaciones o equipos con tensión. Asegúrate y pregunta
3. Si trabajas con máquinas o herramientas alimentadas por tensión eléctrica, aíslate. Utiliza prendas y equipos de seguridad.
4. Si observas alguna anomalía en la instalación eléctrica, comunícala. No trates de arreglar lo que no sabes.
5. Si los cables están gastados o pelados, o los enchufes rotos se corre un grave peligro, por lo que deben
ser reparados de forma inmediata.
6. Al menor chispazo desconecta el aparato o máquina
7. Presta atención a los calentamientos anormales en motores, cables, armarios...notifícalo.
8. Si notas cosquilleo al utilizar un aparato, no esperes más: desconéctalo. Notifícalo
9. Presta especial atención a la electricidad si trabajas.
TODO TRABAJO DE ELECTRICIDAD REQUIERE LA MÁXIMA ATENCIÓN